学术论文
当前位置: 首页 >> 科技成果 >> 学术论文 >> 正文
Near-Infrared Fluorescence Probe for in Situ Detection of Superoxide Anion and Hydrogen Polysulfides in Mitochondrial Oxidative Stress
发布时间:2019-07-18 发布者: 浏览次数:

Analytical Chemistry, 2016, 88,7, 4122-4129Full text

Huang, Yan ; Yu, Fabiao*; Wang, Jianchao; Chen, Lingxin*

https://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b00458

Abstract

H2S plays important physiological and pathological roles in the cardiovascular system and nervous system. However, recent evidence imply that hydrogen polysulfides (H2Sn) are the actual signaling molecules in cells. Although H2Sn have been demonstrated to be responsible for mediating tumor suppressors, ion channels, and transcription factors, more of their biological effects are still need to be elaborated. On one hand, H2Sn have been suggested to be generated from endogenous H2S upon reaction with reactive oxygen species (ROS). On the other hand, H2Sn derivatives are proposed to be a kind of direct antioxidant against intracellular oxidative stress. This conflicting results should be attributed to the regulation of redox homeostasis between ROS and H2Sn. Superoxide anion (O2•–) is undoubtedly the primary ROS existing in mitochondria. We reason that the balance of O2•– and H2Sn are pivotal in physiological and pathological processes. Herein, we report two near-infrared fluorescent probes Hcy-Mito and Hcy-Biot for the detection of O2•– and H2Sn in cells and in vivo. Hcy-Mito is conceived to be applied in mitochondria, and Hcy-Biot is designed to target tumor tissue. Both of the probes were successfully applied for visualizing exogenous and endogenous O2•– and H2Sn in living cells and in tumor mice models. The results demonstrate that H2Sn can be promptly produced by mitochondrial oxidative stress. Flow cytometry assays for apoptosis suggest that H2Sn play critical roles in antioxidant systems.


海南省生物材料与医疗器械工程研究中心/海南省创伤与灾难救援研究重点实验室版权所有 ©2024

地       址:海南省海口市龙华区学院路3号力行楼C栋1层

联系电话:0898-66892503 

微博

微信扫一扫

扫一扫手机访问